Fan carts

Fan cart on track.
An object at rest.

Newton proposed three laws of motion, and it’s the second one that makes for the most interesting labs. Maybe there’s some way to make inertia both fun and educational, but let’s leave the first law for lecture. Equal and opposite reactions are pretty great, but that’s ideal for big demos. Read: rocket launches.

Force, though. Force lets students do stuff and observe what happens. Doing stuff and getting results is how you make physics more interesting.

One tool in our Newton’s-second-law arsenal is the fan cart. An assemblage of a cart with low-friction wheels and a simple DC motor holding a plastic fan. The fan mount pivots, providing variable direction of force. Runs on AA batteries, and is held together mostly with hot glue.

Two very good reasons for the hot glue: 1) When one of these invariably plummets to the floor, the less-than-rigid connections absorb a good deal of the impact when it all falls apart. Usually it falls into pieces, but nothing’s really broken. 2) After one has taken a tumble, it’s mere minutes to get it re-glued and running once more.

The reason for the fan is that it provides a close approximation of constant force, F. If F is constant, and mass (m) is constant, then by F = ma, acceleration (a) is constant, too. Give a running cart a little backwards push – an additional force – and study how its position and velocity change over time. Simple? Sure, and that’s helpful when tying together various concepts.

Relationships between force, mass, and acceleration according to Newton’s second law. Two-dimensional vectors come into play when rotating the fan. Our motion detectors read position, so it’s an illustration of integrals and derivatives underpinning the acceleration, velocity, and position of a moving cart.

The importance of catching a speeding object before it bangs into the end of the track and crashes to the floor.

Rockets

Estes rocket.
Assembled. May or may not be recovered post-launch.

It’s nearly rocket day! Okay, well, it’s nearly time for a physics lecture on momentum conservation – good ol’ Newtonian mechanics – and nothing livens up a discussion of theory and mathematical modeling like making stuff shoot up into the sky. Or, quite possibly, fail to shoot up into the sky, but we’ve been running some advance tests and prepping backup plans because we really, really want things to go zoom.

Zoom, not boom. It’s much more of a hissing zzziiippp than anything else.

The demonstration usually shows three different rockets in succession, each more impressive than the last. The first one, a soda-bottle water rocket, actually illustrates the principle best. Pressurized water shoots out and down, so the rocket moves up. Mass, velocity, terrible aerodynamics. Occasional light spray, so keep your distance.

Then it’s off to model rocket land, with high-velocity solid fuel instead of water. Less mass but at a much, much higher velocity, and in no time that B-size engine has launched the little cardboard-and-plastic rocket high enough to be a speck that’s hard to discern. As long as the weather isn’t terrible, though, a standard B launch is not only recoverable, but entirely possible to catch before it reaches the ground, drifting lazily beneath its parachute.

Scaling on up to a C-size engine, we’ll have our final launch. Bigger engine, more momentum, and even the slightest breeze ensures it’ll drift far beyond our sight and ability to track. Anyone so lucky as to find the rocket afterward can keep it.

If it’s you, maybe stop on by and let us know?